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Abstract

Color printing using halftoning techniques is becomi
ubiquitous on the desktop. Accuracy and consistenc
the color printed by these devices depends on, am
other things, the optical properties of the paper. The g
eral influence of light scattering within the paper h
been known for half a century, but calculation of the 
fect on the color gamut is complex and depends on
details of the paper optical spread function and of 
halftone pattern. Two limiting cases are analyzed, 
paper-scattering and complete-paper-scattering (op
paper spread function is much larger than the halft
cell size). Simple models are presented for the limit
cases of halftone printed color images, and the pre
tions are compared with measurements of single-colo
samples from a wax thermal printer. Results show 
the simple models bound the single-colorant colors p
duced by the wax thermal printer. The simple model p
dicts that the major effect of the paper scatter 
single-colorant images is the shifting of colors along 
CIE L*a*b* locus. This can result in color difference
for the two scattering extremes of 20 CIE L*a*b* un
for the same fractional dot area. Two different C
L*a*b* loci are computed for the same colorant, und
the no-light-scattering versus complete-light-scatter
conditions, but this is a much smaller effect.

Introduction

The explosion of inexpensive computer technology
making color imaging widely available. This is partic
larly true on the desktop, where color printers, mos
ink jet, are replacing the black and white impact d
matrix varieties. This rapid expansion of color printi
has not been without problems. Color printing has, h
torically, been controlled by experienced people who
knowledgeable about printing technology and who h
developed substantial expertise on how to manipulate
technology. On the desktop, either in the home or of
environment, most users have goals other than bec
ing experts in the technology used by their color devic
A major step toward making “good color” a reality f
experts and nonexperts alike has been the incorpora
of so-called color management systems (CMS) into n
computer operating systems. To “manage the color,”
CMS needs some information about the color print
device. This usually takes the form of a device profile,
which translates some specification of color using C
426—Recent Progress in Digital Halftoning II
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colorimetry into the colorant amounts required to re
der the color on the device.

The most successful type of device profile for co
printers is some form of multidimensional look-up tab
(LUT). Generation of such a table can be accomplis
primarily in two ways: (1) Print an array of colors wi
known amounts of colorants and measure the resu
color and (2) use a color imaging model. Printing a
measuring an array of colors is time-consuming a
prone to the random variations of the printer unless
measurements from some number of samples, both f
printers and replicates from the same printer, are a
aged. The imaging performance of most color imag
technologies varies with substrate, environment, p
printing history, etc. For high-quality color imaging, d
vice profiles that cover these variable factors must be avail-
able to the color matching system. A simpler, and possibly
more accurate, approach would be model-based, prov
that unbiased estimates of low variance can be made o
model parameters. The major impediment to t
model-based approach to LUT generation is the lac
a good color imaging model for halftone printing.

The most popular and least expensive color prin
place various colored dots of fixed or varying size o
substrate in a grid pattern of from 300 to 720 dots 
inch. Color formation by these devices uses halfto
printing, wherein the fractional area covered by the th
or four colorants varies. For conventional color halfto
printing that uses rotated halftone screen angles or
various forms of error diffusion or stochastic screeni
the model first proposed by Neugebauer1 in 1937 pro-
vides a starting point for the model-based approa
These equations describe the CIE tristimulus value
the halftone, given the fractional areas of cyan, mage
and yellow colorants and the tristimulus values of 
eight “Neugebauer primaries”: “white” (paper), cya
magenta, yellow, red, green, blue, and three-color bla
The basic tristimulus equations, where T is used for CIE
X, Y, or Z, are:

T =
  

f iTi
i=1

8

∑ ,

f1 = (1 – c)(1 – m)(1 – y),
f2 = (1 – m)(1 – y),
f3 = (1 – c)(1 – y),
f4 = y(1 – c)(1 – m), (1)
f5 = my(1 – c),
f6 = cy (1 – m),
f7 = cm (1 – y),
f8 = cmy.
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In Eq. 1 values of Ti are the tristimulus values fo
“white,” cyan, magenta, yellow, red, green, blue, a
black, respectively. These primaries could be meas
from a transmittance image or a reflectance image
though these equations are much maligned, they are 
robust for a wide array of image microstructur
Neugebauer’s1 original derivation was probabilistic i
approach. However, the same set of equations ca
derived assuming that the cyan, magenta, and ye
halftone layers are superimposed, or as trilinear in
polation, and, as shown in the Appendix, assuming c
plete randomness of the eight primaries.

It is well known, however, that Neugebauer’s eq
tions often do not predict the measured tristimulus 
ues of colored halftones on paper.2–6 The primary reason
first proposed by Yule and Nielsen in 1951,7 is the scat-
tering of light within the bulk of the paper, a pheno
enon that is now known as the paper optical spread
function. Their “fix” was to propose a factor, the “n-fac-
tor,” that modifies the tristimulus values of the eight p
maries by raising them to a power of 1/n and then taking
the n-th root of the result. (Actually the modified for
of the Neugebauer equations was first described
Pobboravsky and Pearson.3 Yule and Nielsen7 gave the
result for a single-color halftone.) Although the inc
poration of the n-factor often works in accounting fo
the effect of light scattering, this formalism does not
curately portray the optical physics of the problem. V
ous approaches have been put forth to increase
accuracy of the equations, usually incorporating so
form of n-factor.8–l0

In 1974 Lehmbeck11 described a model for image
on paper that explicitly included the paper spread fu
tion and colorant layer spatial characteristics. La
Ruckdeshel and Howser12 conducted a complete expl
ration of a one-dimensional version of Lehmbeck’s mo
and showed that the n-factor is theoretically bounded b
one and two. Recent work13–15 has shown that both th
paper and the dot reflectance change with fractiona
area. This is contrary to the Yule–Nielsen single n-fac-
tor approach, which assumes the paper and the do
flectance (tristimulus values) are constant for a fixed
of printing conditions. As Pearson16 has noted, the opt
mum n-factor is a function of fractional area, colora
level, and the uniformity (“formation”) of the sheet 
paper.

A direct approach would be to calculate the spec
reflectance factor as a function of x-y position on the
paper, but, unfortunately, with the current models th
a complex undertaking. Of more immediate pract
value would be the determination of the colorime
bounds on the halftone colors for two cases of light s
tering by the paper: (1) the Neugebauer equations a
(an infinitely narrow paper optical spread function or
lateral scattering within the paper), or n-factor = 1.0, and
(2) the paper spread function is much larger than the 
tone screen spatial frequency, or n-factor = 2.0. Experi-
mental data for the reflectance or color of the pa
between the dots, and the dot color, have shown va
relationships with fractional dot area.13–15 With any scat-
tering, or finite-sized paper spread function, reflecta
limits of the paper between the dots are bounded by
d
d

l-
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paper reflectance, at 0 fractional dot area, and the p
reflectance and colorant layer transmittance produc
fractional dot area = l.0.13 Dot reflectance is bounded b
the same paper reflectance–colorant layer transmitta
product, but at dot area = 0.0, and by the dot reflecta
at fractional dot area = 1.0. The upper bound of the
per reflectance in the absence of any paper spread f
tion is, as assumed in the simple Neugebauer mo
constant for all dot areas. But what is the lower bou
on the paper reflectance–dot area function for the c
plete scattering case? Also what is the upper boun
dot reflectance versus area for the same conditions

This report describes the relationships for these 
limits and provides a comparison of the predictions
single-colorant halftone scales with experimental res
from a wax thermal transfer printer.

Analysis

The functional relationship between the paper and 
reflectance, or tristimulus value, and the fractional a
covered by colorants depends on the sequence of f
ing the halftone dot, the dimensions of the halftone c
and the extent of the spread of light within the paper
the case where the spread of light is very much smaller
than the halftone cell dimension and the printer does
use dot-on-dot printing,17 the Neugebauer equations a
curately represent the printed color. Such practical r
ization might be, for example, a 65-halftone cells/in
pattern printed on a cast-coated paper. A halftone tr
parency would be another example. Knowing the eq
tions that define the color when the spatial extent of
spread of light within the paper is much greater than the
halftone cell size will enable us to define the bounds
the color: the Neugebauer equations for the very sm
scattering case, and the new set of equations for the c
plete scattering case.

Complete Scattering Limit
Imagine that we have three separate halftone colo

layers (cyan, magenta, and yellow) randomly combin
in a sandwich. We do not require, and in fact do not w
the three layers to be spatially coherent, which is 
reason for rotating the screen angles in commercial p
ing. The space average spectral transmittance of the s
wich, t(l), is given by Eq. 2, the product of th
transmittances of each of the three halftone layers;

t(λ) = [tb(λ)(1 – c) + ctc(λ)]
•[tb(λ)(1 – m) + mtm(λ)][ tb(λ)(1 – y) + yty(λ)], (2)

where c, m, and y are the fractional dot areas of cya
magenta, and yellow; tb is the base spectral transmittanc
and tc, tm, and ty are the colorant spectral transmittanc
It can be readily shown that the expansion of Eq. 2 yie
the spectral transmittance version of the Neugeba
equations.4,8 Assume that the transmittance pattern mo
lates the incident light propagating toward a paper s
strate of spectral reflectance Rp(l). We assume that th
incident light is completely scattered, or averaged,
the paper before being reflected. When the light eme
from the paper, the fraction returned at each wavelen
Chapter V—Tone Reproduction and Gamuts—427
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is just the spectral transmittance, given by Eq. 2, times
spectral reflectance of the paper. Equation 3 summa
the reflectance of the paper under the halftone patte

R1 (λ) = t(λ)Rp(λ). (3)

Because the halftone pattern is small compared 
the spatial extent of the light scattering within the 
per, the periodic structure is lost, and the surface of
paper, under the halftone sandwich, is uniform, w
spectral properties given by Eq. 3. Upon reflection fr
the paper, this uniform color light is modulated by 
spectral transmittance of the halftone sandwich, t(l),
given by Eq. 2. Finally, the average reflectance is gi
by the combination of Eq. 3 and Eq. 2. Thus,

R(λ) = t(λ)2Rp(λ). (4)

Note that we have not considered first surface reflec
effects in this formulation.

For a single-colorant halftone, the paper spectra
flectance between the dots is just a linear mixture of
base transmittance and the transmittance of the colo
weighted by the fractional area of the colorant.13 Equa-
tion 5 describes the details. Here Rp is the paper reflec
tance, tb(l) is the base transmittance, tc(l) is the colorant
spectral transmittance, and a is the fractional area cov
ered by the colorant:

Rpaper-dots = Rp (λ)[tb(λ)(1 – a) + atc(λ)]tb(λ). (5)

This equation illustrates that the limiting spect
reflectance of the paper between the dots has, as its 
bound, a line starting at the paper spectral reflecta
for a = 0, and ending at the spectral reflectance given
the paper and colorant transmittance, for a = 1.0. The
paper reflectance curve for any combination of halfto
dot pattern and paper spread function can be foun
the triangle bounded by the line, given by Eq. 5, and
constant Rp.

Figure 1. Cyan (lower left), magenta (right) and yellow (to
single-colorant loci. The solid lines are total scattering; dot
lines are nonscattering, and dash-dot lines are measured d

a*

b*
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Dot reflectance also has a bounded region. It 
been argued before that Eq. 3 also gives the limiting
reflectance, as the fractional colorant area, a, approaches
zero.13 Thus the bounding relationship for the dot refle
tance is given by Eq. 6.

Rdots = Rp (λ)tc(λ)[tb(λ)(1 – a) + atc(λ)]. (6)

The usual assumption is that the dot has cons
reflectance independent of the fractional area of the h
tone and this defines the lower bound of the dot ref
tance region. The upper bound, as a function of fractional
area of the colorant covered, is given by Eq. 6.

Experimental Test of Theory

Experimental verification of Eq. 4 was undertaken, 
ing a wax thermal transfer printer. Measurements w
made of the spectral reflectance of eleven patche
single-colorant (cyan, magenta, and yellow) const
fractional area. The patches included three case
colorant coverage: no colorant, the paper, and comp
or 100% coverage. From the 100% patch, the spec
transmittance was determined by solving Eq. 4 for t(λ),
using the measured paper and 100% area spectral re
tance data for cyan, magenta, and yellow. In this se
the spectral transmittance of the colorant is defined
ing Eqs. 2, 4, and actual measurements [note that b(λ)
for this case = 1.0; i. e., no base]. With the spectral tra
mittance for cyan, magenta, and yellow determined
this manner and using Eqs. 1, 2, and 4, the CIE tristim
values and CIE L*a*b* coordinates can be calcula
for arbitrary amounts of fractional area covered.18 For

Figure 2. L*–C* diagrams for cyan colorant. The solid lin
with +’s is the total scattering limit. The dotted line with +
is the nonscattering limit, and the dashed line with square
measured data. The + marks are computed L*a*b* values
ing increments of 0.05 fractional area..

C*

L*
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single-colorant fractional areas, we can plot two lo
Both loci are plotted as projections; one projection is
the a*-b* plane and the other is a projection in the lig
ness (L*)-metric chroma (C*) plane. One locus is 
the no-scattering, or Neugebauer case, using meas
spectral reflectances of the 100% coverage patches
second locus is for complete light scattering, given
Eq. 4. These limiting loci can be compared with m
sured loci of single-color halftones. This locus appro
was chosen to avoid the difficulty of estimating the fr
tional areas covered by the halftones. If the meas
locus of a single-colorant lies between the two limit
loci, in the two CIE L*a*b* projections, we can reaso
ably conclude that Eqs. 1, 3, and 4 describe the limi
cases.

Results and Discussion

Wax thermal printer technology uses heat to melt a 
bon coated with a wax in which a colorant is dispers
Within the heated area, all of the colorant layer is tra
ferred to a paper receiver sheet, thus assuring a con
colorant layer thickness. The wax thermal printer res
are shown in Figs. 1 through 4. The a*–b* plots are
projections of the loci onto the a*–b* plane (Fig. 1), a
the L*–C* plots are projections of the loci onto an a
proximately constant hue plane, (Figs. 2 through 4)
the CIE L*a*b* system, C* is the distance from the 
axis, termed metric chroma.

For two of the three single colorants, the measu
loci shown in Figs. 1 through 4 are found to lie with
the two boundary loci. An exception was the L*–C* re

Figure 3. L*–C* diagrams for magenta colorant. The so
line with +’s is the total scattering limit.; The dotted line wi
+’s is the nonscattering limit; and the dashed line with squa
is measured data. The + marks are computed L*a*b* val
using increments of 0.05 fractional area.
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resentation for the yellow colorant (Fig. 4), where t
space between the loci is so small that an L* variation
less than about 0.25 causes points to fall outside
boundaries. The a*–b* projection for the yellow colora
fits between the two limiting loci.

Figures 2 through 4 i l lustrate that for a
single-colorant halftones, the complete scattering lim
has higher L* for a given C* than with the Neugebau
equations (no scattering). This confirms the observati
made more than 40 years ago by Yule and Nielsen;7 pa-
pers with large spread functions gave lighter colors. A
ditional model calculations lead us to expect that t
observation also holds for dark colors.

The crosses on the loci in Figs. 2 through 4 rep
sent the computed L*a*b* values for every 5% fraction
dot area from 0 to 100%. Comparison of the points
the two loci shows that the distributions are marke
different. The no-scattering condition results in small d
ferences between the colors at the highlight (lighter) e
of the scale compared with the dark, or higher chrom
end of the scale. With complete scattering the colors
more uniformly spaced along the loci.

Points are defined along these loci according to 
amount of fractional area covered by the colorant. Re

s
s

Figure 4. L*–C* diagrams for yellow colorant. The solid lin
with +’s is the total scattering limit; the dotted line with +’
is the nonscattering limit, and the dashed line with square
measured data. The + marks are computed L*a*b* values 
ing increments of 0.05 fractional area.

Figure 5. L* versus fractional area covered for yellow coloran
Dotted curve is without scattering and the solid curve is w
complete scattering.

C*

L*

Fractional Area

L*
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rangement of the areas via an LUT in the printer p
cessing stream can alter the spacing of the points 
respect to some input. However, physically, any gi
fractional area printed on a specific paper will yield
specific color, and no LUT can change this. Here is wh
the paper spread function and the specifics of the h
tone pattern interact. A good strategy would be to sp
the colors uniformly. To achieve uniform spacing, the
results suggest that large paper spread functions (
scattering) are preferred. This seems to be agains
current practice of using specially coated paper or p
tic substrates, which often have relatively narrow spr
functions.

Maximum distance (color difference) between c
ors generated by the same amount of colorant (fraction
area), under the two diffusion conditions, can be as h
as 20 L*a*b* units. The loci are in fact closer in spa
than this number suggests; the maximum is actu
around 3 to 5 unit color differences. By adjustment
the printed areas in the halftone pattern, the large c
difference can be reduced to the maximum distance
tween the loci. This is the primary colorimetric functi
of so-called “dot gain curves.” However, these res
suggest that there is a limit to the reduction in the c
difference using this dot-gain or 1-D LUT color corre
tion strategy, that limit being the distance between
curves.

Figures 5 through 7 show calculated L* versus fr
tional area covered for the two cases. Note the dif
ence in the L* for the complete-scattering a
no-scattering conditions. For the complete-scatter
case the relationship between L* and fractional are
almost linear for all three colorants. We have often 
served this relationship for a variety of printers, b
monochrome and color. It now appears that this is a 
sequence of the ratio of paper spread function to h
tone cell size, or imaging element size, being such 
nearly complete scattering is observed. The no-scatte
case produces lighter images for the same amoun
colorant.

The curves of Figs. 5 through 7 also suggest the m
nitude of dot area changes needed for constant L*,
so-called dot gain curves. The dot area is usually assu

Figure 6. L* versus fractional area covered for magen
colorant. Dotted curve is no scattering and the solid curv
with complete scattering.

Fractional Area

L*
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Figure 7. L* versus fractional area covered for cyan coloran
Dotted curve is no scattering and the solid curve is with co
plete scattering.

to be equal to the nonscattering curve in these figu
but the measurements are made from scattering ima
that follow the complete scattering curve. Because th
is a decrease in L* for the same colorant, it is assumed
to come from an increase in fractional dot area. Henc
“gain” in the dot area. An upper bound to the dot ga
curves, at least on a lightness basis, can be comp
directly from these curves by computing the differen
in fractional dot area for constant L* between th
nonscattering and complete scattering cases.

The difference in the L*a*b* loci implies that ther
is a difference in the color gamut. Using the Neugeba
equations as a model, which is equivalent to assum
no scattering, can result in “out of gamut” colors. Th
can occur when one inverts the equations to determ
the amounts of c, m, and y, colorants needed for a colo
rimetric match. This problem is due to the paper scat
ing, which alters the dot and paper-between-the-
reflectance that is not considered by the equations.

Conclusions

A proposed spectral model can be used in the dete
nation of the colorimetric limits of Neugebauer halfton
imaging for two cases. The first case, which follows t
well-known Neugebauer equations, is for th
no-paper-scattering case. Complete scattering defines
second case.

Single-colorant halftone patches from a wax the
mal transfer printer showed that these theoretical lim
bound the measured data.

The biggest single effect of scattering is to chan
the color for a fixed amount (fractional area) of printe
colorant. Color differences as high as 20 CIE L*a*b
units have been calculated between single-colorant 
ors printed with the same colorant amounts under 
two scattering cases. However, actual maximum d
tances of the colorimetric loci are only about 3 to 5 C
L*a*b* units apart. The biggest effect of scattering is 
alter the position of colors along the colorant locus. F
no scattering, the distances between colors for eq
colorant amounts at the low-colorant end of the loc

Fractional Area

L*
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are closer together. At the higher colorant end of the
cus the distances become greater. Complete scatt
tends to even out the distance between the equal-colo
increment points on the locus. Dot gain corrections 
tone reproduction LUTs in color management syste
are used to adjust the points on the locus relative to s
input value, but these simple corrections cannot cha
the locus that is defined by a paper spread function
printing conditions to a locus defined by another se
conditions. Multiple-dimension LUTs must be used f
this purpose.

Also, the color quantization inherent in the sm
halftone cell printing is greater at high colorant lev
with no paper scattering. In other words, there are gre
distances along the colorant loci, at high colorant lev
for contrast dot area differences. This suggests some
vantage for printing on noncoated paper or substrates 
large paper spread function (scattering). One poss
penalty with this strategy is a loss of image sharpne

Appendix

This appendix illustrates how to derive the Neugeba
equations from set and probabilistic concepts.

Figure Al shows a Venn diagram of the set of all t
possible “events” when overprinting three colors, Ca
cyan, Ma = magenta, and Ya = yellow. The events ar
= white paper, K = black, R = red, G = green, B = bl
C = cyan, M = magenta, and Y = yellow, eight in tota

The approach to the derivation is to determine 
probabilities of events (colors) W, C, M, Y, R, G, B, a
K in terms of the colorant amounts Ca, Ma, and Ya. 
assume all events to be independent. We therefore 
the following probabilities:

p[R] = p[Ma «Ya] – p[Ca«Ma«Ya]
= MaYa – CaMaYa = MaYa(l – Ca), (Al

p[G] = p[Ca«Ya] – p[Ca«Ma«Ya]
= CaYa – CaMaYa = CaYa(1 – Ma) (A2

p[B] = p[Ca«Ma] – p[Ca«Ma«Ya]
= CaMa – CaMaYa = CaMa(1 – Ya), (A3

Figure Al. Venn diagram of cyan, magenta, and yellow ov
prints and the “events” (colors) they generate.
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p[K] = p[Ca«Ma«Ya] = CaMaYa, (A4)

p[C] = p[Ca] – p[B]-p[G] – p[K]
= Ca –CaMa(l – Ya) – CaYa(l – Ma) – CaMaYa
= Ca(l – Ma)(l – Ya),   (A5)

p[M] = p[Ma] – p[B] – p[R] – p[K]
= Ma – CaMa(1 – Ya) – MaYa(l – Ca) – CaMaYa
= Ma(1 – Ya)(1 – Ya), (A6)

p[Y] = p[Ya] – p[G] – p[R] – p[K]
= Ya – CaYa(l – Ma) – MaYa(l – Ca) – CaMaYa =
Ya(l – Ca)(l – Ma), (A7)

p[W] = p[Ca'«Ma'«Ya']
= (1 – Ca)(l – Ma)(l – Ya). (A8)

To compute the tristimulus value of the color, w
take the expected value, or average, over all the col
From elementary statistics we know that the expec
tristim-ulus value, Tcolor, is just the tristimulus value o
the events (colors) times the probability of occurren
Thus

Tcolor = Twp[W]+Tcp[C]+TMp[M]
+ TYp[Y]+T Rp[R]+TGp[G]+TBp[B]+TKp[K].    (A9)

Equation A9, when combined with the probabilitie
given by Eqs. A1 through A8, yields the familia
Neugebauer equations. Therefore, the Neugebauer e
tions imply that all the colors in a halftone image a
independent of each other. No other assumptions w
made in this derivation.
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