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Abstract colorimetry into the colorant amounts required to ren-
der the color on the device.

Color printing using halftoning techniques is becoming  The most successful type of device profile for color
ubiquitous on the desktop. Accuracy and consistency gfrinters is some form of multidimensional look-up table
the color printed by these devices depends on, amon@UT). Generation of such a table can be accomplished
other things, the optical properties of the paper. The gerprimarily in two ways: (1) Print an array of colors with
eral influence of light scattering within the paper hasknown amounts of colorants and measure the resultant
been known for half a century, but calculation of the ef-color and (2) use a color imaging model. Printing and
fect on the color gamut is complex and depends on themeasuring an array of colors is time-consuming and
details of the paper optical spread function and of th@rone to the random variations of the printer unless the
halftone pattern. Two limiting cases are analyzed, nomeasurements from some number of samples, both from
paper-scattering and complete-paper-scattering (opticg@rinters and replicates from the same printer, are aver-
paper spread function is much larger than the halftonaged. The imaging performance of most color imaging
cell size). Simple models are presented for the limitingechnologies varies with substrate, environment, past
cases of halftone printed color images, and the predigrinting history, etc. For high-quality color imaging, de-
tions are compared with measurements of single-colorawice profiles that cover these variable factors must bé-av
samples from a wax thermal printer. Results show thatble to the color matching system. A simpler, anskjidy
the simple models bound the single-colorant colors promore accurate, approach would be model-based, provided
duced by the wax thermal printer. The simple model prethat unbiased estimates of low variance can be made of the
dicts that the major effect of the paper scatter oomodel parameters. The major impediment to the
single-colorant images is the shifting of colors along thenodel-based approach to LUT generation is the lack of
CIE L*a*b* locus. This can result in color differences a good color imaging model for halftone printing.
for the two scattering extremes of 20 CIE L*a*b* units The most popular and least expensive color printers
for the same fractional dot area. Two different CIEplace various colored dots of fixed or varying size on a
L*a*b* loci are computed for the same colorant, undersubstrate in a grid pattern of from 300 to 720 dots per
the no-light-scattering versus complete-light-scatteringnch. Color formation by these devices uses halftone

conditions, but this is a much smaller effect. printing, wherein the fractional area covered by the three
or four colorants varies. For conventional color halftone
Introduction printing that uses rotated halftone screen angles or the

various forms of error diffusion or stochastic screening,

The explosion of inexpensive computer technology ighe model first proposed by Neugebatuier1937 pro-
making color imaging widely available. This is particu- vides a starting point for the model-based approach.
larly true on the desktop, where color printers, mostlylhese equations describe the CIE tristimulus values of
ink jet, are replacing the black and white impact dothe halftone, given the fractlonal_ar_eas of cyan, magenta
matrix varieties. This rapid expansion of color printingand yellow colorants and the tristimulus values of the
has not been without problems. Color printing has, hiseight “Neugebauer primaries”: “white” (paper), cyan,
torically, been controlled by experienced people who ar&agenta, yellow, red, green, blue, and three-color black.
knowledgeable about printing technology and who havd he basic tristimulus equations, whéres used for CIE
developed substantial expertise on how to manipulate th& Y, 0r Z, are:

technology. On the desktop, either in the home or office 8

environment, most users have goals other than becom- = _ZlfiTi '

ing experts in the technology used by their color devices. f = ("1 —c)(1 —m)(1 —y),

A major step toward making “good color” a reality for £ = (1 -m)(1 -y)

experts and nonexperts alike has been the incorporation £ = (1 -c)(1-y) '

of so-called color management systems (CMS) into new £ = y(1 -0)(1 —rﬁ) (1)
computer operating systems. To “manage the color,” the £ = my(1 —c) ’

CMS needs some information about the color printing £ = cy (1 —m)’

device. This usually takes the form oflavice profile £ = cm (1 —y)’

which translates some specification of color using CIE f; - cmy. ’
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In Eg. 1 values off, are the tristimulus values for paper reflectance, at O fractional dot area, and the paper
“white,” cyan, magenta, yellow, red, green, blue, andeflectance and colorant layer transmittance product at
black, respectively. These primaries could be measurefdactional dot area = 1.8.Dot reflectance is bounded by
from a transmittance image or a reflectance image. Althe same paper reflectance—colorant layer transmittance
though these equations are much maligned, they are quipeoduct, but at dot area = 0.0, and by the dot reflectance
robust for a wide array of image microstructures.at fractional dot area = 1.0. The upper bound of the pa-
Neugebauer’soriginal derivation was probabilistic in per reflectance in the absence of any paper spread func-
approach. However, the same set of equations can li®n is, as assumed in the simple Neugebauer model,
derived assuming that the cyan, magenta, and yellowonstant for all dot areas. But what is the lower bound
halftone layers are superimposed, or as trilinear interen the paper reflectance—dot area function for the com-
polation, and, as shown in the Appendix, assuming conplete scattering case? Also what is the upper bound of
plete randomness of the eight primaries. dot reflectance versus area for the same conditions?

It is well known, however, that Neugebauer’'s equa-  This report describes the relationships for these two
tions often do not predict the measured tristimulus vallimits and provides a comparison of the predictions of
ues of colored halftones on papéiThe primary reason, single-colorant halftone scales with experimental results
first proposed by Yule and Nielsen in 195ik,the scat- from a wax thermal transfer printer.
tering of light within the bulk of the paper, a phenom-
enon that is now known as tlpmper optical spread Analysis
function Their “fix” was to propose a factor, the-fac-
tor,” that modifies the tristimulus values of the eight pri- The functional relationship between the paper and dot
maries by raising them to a power ohdihd then taking reflectance, or tristimulus value, and the fractional area
the n-th root of the result. (Actually the modified form covered by colorants depends on the sequence of form-
of the Neugebauer equations was first described bing the halftone dot, the dimensions of the halftone cell,
Pobboravsky and Pearsdiule and Nielsehgave the and the extent of the spread of light within the paper. In
result for a single-color halftone.) Although the incor-the case where the spread of light is very msrofaller
poration of then-factor often works in accounting for than the halftone cell dimension and the printer does not
the effect of light scattering, this formalism does not acuse dot-on-dot printingf,the Neugebauer equations ac-
curately portray the optical physics of the problem. Vari-curately represent the printed color. Such practical real-
ous approaches have been put forth to increase theation might be, for example, a 65-halftone cells/inch
accuracy of the equations, usually incorporating someattern printed on a cast-coated paper. A halftone trans-
form of n-factoré-° parency would be another example. Knowing the equa-

In 1974 Lehmbeck described a model for images tions that define the color when the spatial extent of the
on paper that explicitly included the paper spread funcspread of light within the paper is mugteaterthan the
tion and colorant layer spatial characteristics. Laterhalftone cell size will enable us to define the bounds of
Ruckdeshel and Howsérconducted a complete explo- the color: the Neugebauer equations for the very small
ration of a one-dimensional version of Lehmbeck’s modekcattering case, and the new set of equations for the com-
and showed that thefactor is theoretically bounded by plete scattering case.
one and two. Recent wofk!s has shown that both the
paper and the dot reflectance change with fractional ddfomplete Scattering Limit
area. This is contrary to the Yule—Nielsen singitac- Imagine that we have three separate halftone colorant
tor approach, which assumes the paper and the dot riayers (cyan, magenta, and yellow) randomly combined
flectance (tristimulus values) are constant for a fixed sein a sandwich. We do not require, and in fact do not want,
of printing conditions. As Pearstirthas noted, the opti- the three layers to be spatially coherent, which is one
mum n-factor is a function of fractional area, colorant reason for rotating the screen angles in commercial print-
level, and the uniformity (“formation”) of the sheet of ing. The space average spectral transmittance of the sand-
paper. wich, t(l), is given by Eq. 2, the product of the

A direct approach would be to calculate the spectralransmittances of each of the three halftone layers;
reflectance factor as a function »fy position on the
paper, but, unfortunately, with the current models thisis  t(A) = [t,(A)(1 —c) + ct(A)]

a complex undertaking. Of more immediate practical  <[t,(A)(1 —m) + m{ (A)][t,(A)(1 —y) +yt(A)], (2)
value would be the determination of the colorimetric

bounds on the halftone colors for two cases of light scatwherec, m, andy are the fractional dot areas of cyan,
tering by the paper: (1) the Neugebauer equations appipagenta, and yellow; is the base spectral transmittance;
(an infinitely narrow paper optical spread function or noandt,, t,, andt are the colorant spectral transmittances.
lateral scattering within the paper),refactor = 1.0, and It can be readily shown that the expansion of Eq. 2 yields
(2) the paper spread function is much larger than the halthe spectral transmittance version of the Neugebauer
tone screen spatial frequency,mfactor = 2.0. Experi- equationg:® Assume that the transmittance pattern modu-
mental data for the reflectance or color of the papelates the incident light propagating toward a paper sub-
between the dots, and the dot color, have shown variowgrate of spectral reflectan€(l). We assume that the
relationships with fractional dot aré&a!>With any scat- incident light is completely scattered, or averaged, by
tering, or finite-sized paper spread function, reflectancehe paper before being reflected. When the light emerges
limits of the paper between the dots are bounded by thigom the paper, the fraction returned at each wavelength
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is just the spectral transmittance, given by Eq. 2, times the Dot reflectance also has a bounded region. It has
spectral reflectance of the paper. Equation 3 summarizémen argued before that Eq. 3 also gives the limiting dot
the reflectance of the paper under the halftone patternteflectance, as the fractional colorant agapproaches
zero®® Thus the bounding relationship for the dot reflec-
R, () = )R 3) g P

tance is given by Eq. 6.
Because the halftone pattern is small compared with

the spatial extent of the light scattering within the pa- Rios = Ry MM A)(1 —a) +at(A)]. (6)

per, the periodic structure is lost, and the surface of the The usual assumption is that the dot has constant
paper, under the halftone sandwich, is uniform, withreflectance independent of the fractional area of the half-
spectral properties given by Eq. 3. Upon reflection fromtone and this defines the lower bound of the dot reflec-
the paper, this uniform color light is modulated by thetance region. The upper bound, as a functidinaational
spectral transmittance of the halftone sandwigh, area of the colorant covered, is given by Eq. 6.
given by Eq. 2. Finally, the average reflectance is given

by the combination of Eq. 3 and Eq. 2. Thus, Experimental Test of Theory

R(A) = tAPR,A). 4) Experimental verification of Eq. 4 was undertaken, us-
Note that we have not considered first surface reflectioing a wax thermal transfer printer. Measurements were
effects in this formulation. made of the spectral reflectance of eleven patches of
For a single-colorant halftone, the paper spectral resingle-colorant (cyan, magenta, and yellow) constant
flectance between the dots is just a linear mixture of théractional area. The patches included three cases of
base transmittance and the transmittance of the coloranblorant coverage: no colorant, the paper, and complete
weighted by the fractional area of the color&qua- or 100% coverage. From the 100% patch, the spectral
tion 5 describes the details. HeReis the paper reflec- transmittance was determined by solving Eq. 4@},
tancet (1) is the base transmittandg(l) is the colorant using the measured paper and 100% area spectral reflec-
spectral transmittance, amds the fractional area cov- tance data for cyan, magenta, and yellow. In this sense
ered by the colorant: the spectral transmittance of the colorant is defined us-

_ _ ing Egs. 2, 4, and actual measurements [note gt t
Roperaos™ Ry M[LA)(L —2) +atA)]t,(A). (5) for this case = 1.0; i. e., no base]. With the spectral trans-
This equation illustrates that the limiting spectralmittance for cyan, magenta, and yellow determined in

reflectance of the paper between the dots has, as its lowiis manner and using Egs. 1, 2, and 4, the CIE tristimulus
bound, a line starting at the paper spectral reflectancealues and CIE L*a*b* coordinates can be calculated

fora= 0, and ending at the spectral reflectance given bfor arbitrary amounts of fractional area covete&or
the paper and colorant transmittance, dor 1.0. The

paper reflectance curve for any combination of halftone
dot pattern and paper spread function can be found int®®

the triangle bounded by the line, given by Eq. 5, and the
constaniR .
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single-colorant fractional areas, we can plot two lociresentation for the yellow colorant (Fig. 4), where the
Both loci are plotted as projections; one projection is irspace between the loci is so small that an L* variation of
the a*-b* plane and the other is a projection in the lightless than about 0.25 causes points to fall outside the
ness (L*)-metric chroma (C*) plane. One locus is forboundaries. The a*—b* projection for the yellow colorant
the no-scattering, or Neugebauer case, using measuréts between the two limiting loci.
spectral reflectances of the 100% coverage patches. The Figures 2 through 4 illustrate that for all
second locus is for complete light scattering, given bysingle-colorant halftones, the complete scattering limit
Eg. 4. These limiting loci can be compared with meahas higher L* for a given C* than with the Neugebauer
sured loci of single-color halftones. This locus approaclequations (no scattering). This confirms the observations
was chosen to avoid the difficulty of estimating the frac-made more than 40 years ago by Yule and Nielga;
tional areas covered by the halftones. If the measuregers with large spread functions gave lighter colors. Ad-
locus of a single-colorant lies between the two limitingditional model calculations lead us to expect that this
loci, in the two CIE L*a*b* projections, we can reason- observation also holds for dark colors.
ably conclude that Eqgs. 1, 3, and 4 describe the limiting The crosses on the loci in Figs. 2 through 4 repre-
cases. sent the computed L*a*b* values for every 5% fractional
dot area from 0 to 100%. Comparison of the points on
Results and Discussion the two loci shows that the distributions are markedly
different. The no-scattering condition results in small dif-
Wax thermal printer technology uses heat to melt a ribferences between the colors at the highlight (lighter) end
bon coated with a wax in which a colorant is dispersedof the scale compared with the dark, or higher chroma,
Within the heated area, all of the colorant layer is transend of the scale. With complete scattering the colors are
ferred to a paper receiver sheet, thus assuring a constanore uniformly spaced along the loci.
colorant layer thickness. The wax thermal printer results  Points are defined along these loci according to the
are shown in Figs. 1 through 4. The a*~b* plots are th@mount of fractional area covered by the colorant. Rear-
projections of the loci onto the a*—b* plane (Fig. 1), and
the L*~C* plots are projections of the loci onto an ap-

proximately constant hue plane, (Figs. 2 through 4). In ™
the CIE L*a*b* system, C* is the distance from the L* . |
axis, termed metric chroma. 8 ]
For two of the three single colorants, the measured | e “u,\"*'+-"":,;a;:~~,__~1_

loci shown in Figs. 1 through 4 are found to lie within ~ %%; 17 DU Fr e
the two boundary loci. An exception was the L*~C* rep-*, R I ] e
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rangement of the areas via an LUT in the printer pro- 100
cessing stream can alter the spacing of the points with %0

respect to some input. However, physically, any given 3o M‘*‘“L S

fractional area printed on a specific paper will yield a 7o s ST SV

specific color, and no LUT can change this. Here is where g, i SR Y |

the paper spread function and the specifics of the half- s, ag sl
tone pattern interact. A good strategy would be to space 40 ~

the colors uniformly. To achieve uniform spacing, these
results suggest that large paper spread functions (high
scattering) are preferred. This seems to be against the 20
current practice of using specially coated paper or plas- 1° B
tic substrates, which often have relatively narrow spread ¢ 5
functions.

Maximum distance (color difference) between col- Fractional Area

ors generated e same amount of colorant (fractional Figure 7. L* versus fractional area covered for cyan colorant.

area),under the 'FWO d|ffu5|0_n Con_dltlons, can b_e as hlghDotted curve is no scattering and the solid curve is with com-
as 20 L*a*b* units. The loci are in fact closer in SPacep|ete scattering.

than this number suggests; the maximum is actually
around 3 to 5 unit color differences. By adjustment of
the printed areas in the halftone pattern, the large color
difference can be reduced to the maximum distance bée be equal to the nonscattering curve in these figures,
tween the loci. This is the primary colorimetric function but the measurements are made from scattering images
of so-called “dot gain curves.” However, these resultghat follow the complete scattering curve. Because there
suggest that there is a limit to the reduction in the colois a decrease in L* for the same colorant, iassumed
difference using this dot-gain or 1-D LUT color correc-to come from an increase in fractional dot area. Hence a
tion strategy, that limit being the distance between thégain” in the dot area. An upper bound to the dot gain
curves. curves, at least on a lightness basis, can be computed

Figures 5 through 7 show calculated L* versus frac-directly from these curves by computing the difference
tional area covered for the two cases. Note the differin fractional dot area for constant L* between the
ence in the L* for the complete-scattering andnonscattering and complete scattering cases.
no-scattering conditions. For the complete-scattering The difference in the L*a*b* loci implies that there
case the relationship between L* and fractional area it a difference in the color gamut. Using the Neugebauer
almost linear for all three colorants. We have often obequations as a model, which is equivalent to assuming
served this relationship for a variety of printers, bothno scattering, can result in “out of gamut” colors. This
monochrome and color. It now appears that this is a corcan occur when one inverts the equations to determine
sequence of the ratio of paper spread function to halfthe amounts of, m, andy, colorants needed for a colo-
tone cell size, or imaging element size, being such thatmetric match. This problem is due to the paper scatter-
nearly complete scattering is observed. The no-scatteringg, which alters the dot and paper-between-the-dot
case produces lighter images for the same amount oéflectance that is not considered by the equations.
colorant.

The curves of Figs. 5 through 7 also suggest the mag- Conclusions
nitude of dot area changes needed for constant L*, the
so-called dot gain curves. The dot area is usually assumédproposed spectral model can be used in the determi-

nation of the colorimetric limits of Neugebauer halftone
imaging for two cases. The first case, which follows the

01 02 03 04 03 06 07 08 09 1

100 well-known Neugebauer equations, is for the

00 [ no-paper-scattering case. Complete scattering defines the

%0 “\t\\k e second case.

0 :L 1 Single-colorant halftone patches from a wax ther-

o B T SN mal transfer printer showed that these theoretical limits
*‘“‘“hw;‘" ., bound the measured data.

5 o0 i The biggest single effect of scattering is to change
40 _ the color for a fixed amount (fractional area) of printed
30 colorant. Color differences as high as 20 CIE L*a*b*
20 units have been calculated between single-colorant col-
10 ors printed with the same colorant amounts under the

0 two scattering cases. However, actual maximum dis-
0 o1 02 03 04 05 06 07 08 0% 1  tances of the colorimetric loci are only about 3 to 5 CIE
Eractional Area L*a*b* units apart. The biggest effect of scattering is to

Fi 6. L* fractional d alter the position of colors along the colorant locus. For
igure 6. L* versus fractional area covered for magenta,, geattering, the distances between colors for equal

colorant. Dotted curve is no scattering and the solid curve is
with complete scattering. colorant amounts at the low-colorant end of the locus
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are closer together. At the higher colorant end of the lo-  p[K] = p[CakMa«Ya] = CaMaYa, (A4)
cus the distances become greater. Complete scattering _
- p[C] = p[Ca] — p[B]-p[G] - p[K]

tends to even out the distance between the equal-colorant _"~ _CaMa(l — Ya) — CaYa(l — Ma) — CaMaYa
increment points on the locus. Dot gain corrections and  _

. : = Ca(l — Ma)(l - Ya), (A5)
tone reproduction LUTs in color management systems
are used to adjust the points on the locus relative to some p[M] = p[Ma] — p[B] — p[R] — p[K]
input value, but these simple corrections cannot change = Ma - CaMa(1 —Ya) — MaYa(l — Ca) — CaMaYa

the locus that is defined by a paper spread function and = Ma(1 -Ya)(1 - Ya), (A6)
printing conditions to a locus defined by another set of - _ _ _

co_nditions. Multiple-dimension LUTs must be used for g[;(; _ 82@10 _p,[v?;) _%lg(a(ﬂl%a) _CaMaYa =
this purpose. Ya(l — Ca)(l — Ma), (AT)

Also, the color quantization inherent in the small
halftone cell printing is greater at high colorant levels  P[W] = p[Ca'«Ma'«Ya]
with no paper scattering. In other words, there are greater = (1 — Ca)(l - Ma)(I - Ya). (A8)
distances along the colorant loci, at high colorant levels, T4 compute the tristimulus value of the color, we
for contrast dot area differences. This suggests some agye the expected value, or average, over all the colors.
vantage for printing on noncoated paper or substrates Witom elementary statistics we know that the expected
large paper spread function (scattering). One possiblgistim-ulus value, T, is just the tristimulus value of
penalty with this strategy is a loss of image sharpnessine events (colors) times the probability of occurrence.

Thus

Teoior = T,P[W]+T p[C]+T,,p[M]

color —

This appendix illustrates how to derive the Neugebauer + T,P[Y]+Tp[R]+T;p[G]+T,p[B]+T,p[K]. (A9)

equations from set and probabilistic concepts. Equation A9, when combined with the probabilities
Figure Al shows a Venn diagram of the set of all theyjyen by Eqs. Al through A8, yields the familiar

possible “events” when overprinting three colors, Ca S\eygebauer equations. Therefore, the Neugebauer equa-

cyan, Ma = magenta, and Ya = yellow. The events are Wqns imply that all the colors in a halftone image are

= white paper, K = black, R = red, G = green, B = blue;gependent of each other. No other assumptions were
C = cyan, M = magenta, and Y = yellow, eight in total. j,ade in this derivation.

The approach to the derivation is to determine the
probabilities of events (colors) W, C, M, Y, R, G, B, and References
K in terms of the colorant amounts Ca, Ma, and Ya. We
assume all events to be independent. We therefore haye 4 g 3 Neugebauetegitschr. Wiss Photog86: 75 (1937).

Appendix

the following probabilities: 2. |. PobboravskyTAGA Proc.p. 10 (1964).
3. |. Pobboravsky and M. Pears@®GA Procp. 65 (1972).
p[R] = p[Ma «Ya] — p[CacMa«Ya] 4. J.A.S.ViggianoTAGA Procp. 647 (1985).
= MaYa — CaMaYa = MaYa(l — Ca), (Al) 5. R.Rolleston and B. BalasubramaniBmceedings of 1st
IS&T/SID Color Imaging Conference, 32 (1993).
p[G] = p[Ca«Ya] — p[Ca«Ma«Ya] 6. H.R.KangProceedings of 1st IS&T/SID Color Imaging
= CaYa — CaMaYa = CaYa(1 — Ma) (A2) Conferencep. 78 (1993).
p[B] = p[Ca«Ma] — p[Ca«Ma«Ya] 7. J.A.C. Yl_JIe_and W. J. NeilsefAGA Procp. 65 (1951).
= CaMa — CaMaYa = CaMa(l — Ya) (A3) 8. J.A.S.ViggianoTAGA Proc.p. 44 (1990).
' 9. Y. Liu, TAGA Procp. 154 (1991).
10. S.Yoshinobu and T. Mizund, Imaging Sci.Techno87:
385 (1993).
W i 11. D. R. Lehmbeck, inS&T 28th Annual Conference and
,GEI_"““\\_ T Seminar on Quality Controp. 155, IS&T (May 1975).
// AN ~ 12. F. Ruckdeschel and O. G. Hauskppl. Opt.17: 3376
/ SN M \\ (1978).
i C B \ ! 13. P. G. Engeldrun. Imaging Sci. Technad8: 545 (1994);
| !' ! Ma see pg. 383, this publication
L r—=\f\ / 14. J. S. Arney, P. G. Engeldrum, and H. ZeR§GA Proc.
! Y RN / p. 353 (1995).
\ ,/ kN / \ Vi 15. J. S. Arney and P. G. EngeldruRrpceedings of IS&T's
\\ G -:'{x v 11th International Congress on Advances in Non-Impact
— T Printing Technologiesp. 497 (1995)see pg. 397, this
\ | publication.
\ Y / 16. M. PearsorTAGA Proc.p. 415 (1980).
\\ s 17. P. G. Engeldruml. Imaging Technoll2: 126 (1986).
\.\H 3 r’ff/ 18. CIE Publication 15.2 and ASTM 308E-1987.

Figure Al. Venn diagram of cyan, magenta, and yellow overd Previously published in thiburnal of Imaging Science and
prints and the “events” (colors) they generate. Technology4Q(3) pp. 239-244, 1996.
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